16

Patterns of Algorithms

This chapter presents several fundamental topics related to the theory of algorithms.
Included are dynamic programming (Section 16.1), randomized algorithms (Sec-
tion 16.2), and the concept of a transform (Section 16.3.5). Each of these can be
viewed as an example of an “algorithmic pattern” that is commonly used for a
wide variety of applications. In addition, Section 16.3 presents a number of nu-
merical algorithms. Section 16.2 on randomized algorithms includes the Skip List
(Section 16.2.2). The Skip List is a probabilistic data structure that can be used
to implement the dictionary ADT. The Skip List is no more complicated than the
BST. Yet it often outperforms the BST because the Skip List’s efficiency is not tied
to the values or insertion order of the dataset being stored.

16.1 Dynamic Programming

Consider again the recursive function for computing the nth Fibonacci number.

/** Recursively generate and return the n’th Fibonacci
number */
static long fibr(int n) {
// £ibr(91) is the largest value that fits in a long

assert (n > 0) && (n <= 91) : "n out of range";
if ((n ==1) || (n == 2)) return 1; // Base case
return fibr(n-1) + fibr (n-2); // Recursive call

The cost of this algorithm (in terms of function calls) is the size of the nth Fi-
bonacci number itself, which our analysis of Section 14.2 showed to be exponential
(approximately n'%2). Why is this so expensive? Primarily because two recursive
calls are made by the function, and the work that they do is largely redundant. That
is, each of the two calls is recomputing most of the series, as is each sub-call, and so
on. Thus, the smaller values of the function are being recomputed a huge number
of times. If we could eliminate this redundancy, the cost would be greatly reduced.
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510 Chap. 16 Patterns of Algorithms

The approach that we will use can also improve any algorithm that spends most of
its time recomputing common subproblems.

One way to accomplish this goal is to keep a table of values, and first check the
table to see if the computation can be avoided. Here is a straightforward example
of doing so.

int fibrt (int n) {
// Assume Values has at least n slots, and all
// slots are initialized to O
if (n <= 2) return 1; // Base case
if (Values[n] == 0)
Values[n] = fibrt(n-1) + fibrt (n-2);
return Values|[n];

This version of the algorithm will not compute a value more than once, so its
cost should be linear. Of course, we didn’t actually need to use a table storing all of
the values, since future computations do not need access to all prior subproblems.
Instead, we could build the value by working from 0 and 1 up to n rather than
backwards from n down to 0 and 1. Going up from the bottom we only need to
store the previous two values of the function, as is done by our iterative version.

/** Iteratively generate and return the n’th Fibonacci
number */
static long fibi(int n) {
// £ibr(91) is the largest value that fits in a long

assert (n > 0) && (n <= 91) : "n out of range";

long curr, prev, past;

if ((n ==1) || (n == 2)) return 1;

curr = prev = 1; // curr holds current Fib value

for (int i=3; i<=n; i++) { // Compute next value
past = prev; // past holds fibi (i-2)
prev = curr; // prev holds fibi (i-1)
curr = past + prev; // curr now holds fibi (i)

}

return curr;

Recomputing of subproblems comes up in many algorithms. It is not so com-
mon that we can store only a few prior results as we did for £ibi. Thus, there are
many times where storing a complete table of subresults will be useful.

This approach to designing an algorithm that works by storing a table of results
for subproblems is called dynamic programming. The name is somewhat arcane,
because it doesn’t bear much obvious similarity to the process that is taking place
when storing subproblems in a table. However, it comes originally from the field of
dynamic control systems, which got its start before what we think of as computer
programming. The act of storing precomputed values in a table for later reuse is
referred to as “programming” in that field.
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Dynamic programming is a powerful alternative to the standard principle of
divide and conquer. In divide and conquer, a problem is split into subproblems,
the subproblems are solved (independently), and then recombined into a solution
for the problem being solved. Dynamic programming is appropriate whenever (1)
subproblems are solved repeatedly, and (2) we can find a suitable way of doing the
necessary bookkeeping. Dynamic programming algorithms are usually not imple-
mented by simply using a table to store subproblems for recursive calls (i.e., going
backwards as is done by f£ibrt). Instead, such algorithms are typically imple-
mented by building the table of subproblems from the bottom up. Thus, £ibi bet-
ter represents the most common form of dynamic programming than does £ibrt,
even though it doesn’t use the complete table.

16.1.1 The Knapsack Problem

We will next consider a problem that appears with many variations in a variety
of commercial settings. Many businesses need to package items with the greatest
efficiency. One way to describe this basic idea is in terms of packing items into
a knapsack, and so we will refer to this as the Knapsack Problem. We will first
define a particular formulation of the knapsack problem, and then we will discuss
an algorithm to solve it based on dynamic programming. We will see other versions
of the knapsack problem in the exercises and in Chapter 17.

Assume that we have a knapsack with a certain amount of space that we will
define using integer value K. We also have n items each with a certain size such
that that item ¢ has integer size k;. The problem is to find a subset of the n items
whose sizes exactly sum to K, if one exists. For example, if our knapsack has
capacity K = 5 and the two items are of size k; = 2 and k2 = 4, then no such
subset exists. But if we add a third item of size k3 = 1, then we can fill the knapsack
exactly with the second and third items. We can define the problem more formally
as: Find S C {1, 2, ...,n} such that

Z/%:K.

€S

Example 16.1 Assume that we are given a knapsack of size K = 163

and 10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101. Can we find a

subset of the items that exactly fills the knapsack? You should take a few

minutes and try to do this before reading on and looking at the answer.
One solution to the problem is: 19, 27, 44, 73.

Example 16.2 Having solved the previous example for knapsack of size
163, how hard is it now to solve for a knapsack of size 164?
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Unfortunately, knowing the answer for 163 is of almost no use at all
when solving for 164. One solution is: 9, 54, 101.

If you tried solving these examples, you probably found yourself doing a lot of
trial-and-error and a lot of backtracking. To come up with an algorithm, we want
an organized way to go through the possible subsets. Is there a way to make the
problem smaller, so that we can apply divide and conquer? We essentially have two
parts to the input: The knapsack size K and the n items. It probably will not do us
much good to try and break the knapsack into pieces and solve the sub-pieces (since
we already saw that knowing the answer for a knapsack of size 163 did nothing to
help us solve the problem for a knapsack of size 164).

So, what can we say about solving the problem with or without the nth item?
This seems to lead to a way to break down the problem. If the nth item is not
needed for a solution (that is, if we can solve the problem with the first n — 1 items)
then we can also solve the problem when the nth item is available (we just ignore
it). On the other hand, if we do include the nth item as a member of the solution
subset, then we now would need to solve the problem with the first n — 1 items
and a knapsack of size K — k, (since the nth item is taking up k,, space in the
knapsack).

To organize this process, we can define the problem in terms of two parameters:
the knapsack size K and the number of items n. Denote a given instance of the
problem as P(n, K). Now we can say that P(n, K') has a solution if and only if
there exists a solution for either P(n — 1, K) or P(n— 1, K — k;,). That is, we can
solve P(n, K) only if we can solve one of the sub problems where we use or do
not use the nth item. Of course, the ordering of the items is arbitrary. We just need
to give them some order to keep things straight.

Continuing this idea, to solve any subproblem of size n — 1, we need only to
solve two subproblems of size n — 2. And so on, until we are down to only one
item that either fills the knapsack or not. This naturally leads to a cost expressed
by the recurrence relation 7'(n) = 27(n — 1) + ¢ = ©(2"). That can be pretty
expensive!

But... we should quickly realize that there are only n(K + 1) subproblems
to solve! Clearly, there is the possibility that many subproblems are being solved
repeatedly. This is a natural opportunity to apply dynamic programming. We sim-
ply build an array of size n x K + 1 to contain the solutions for all subproblems
P(i,k),1<i<n,0<k<K.

There are two approaches to actually solving the problem. One is to start with
our problem of size P(n, K) and make recursive calls to solve the subproblems,
each time checking the array to see if a subproblem has been solved, and filling
in the corresponding cell in the array whenever we get a new subproblem solution.
The other is to start filling the array for row 1 (which indicates a successful solution
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only for a knapsack of size k1). We then fill in the succeeding rows from ¢ = 2 to
n, left to right, as follows.

if P(n — 1, K) has a solution,
then P(n, K) has a solution
else if P(n — 1, K — k) has a solution
then P(n, K) has a solution
else P(n, K) has no solution.

In other words, a new slot in the array gets its solution by looking at two slots in
the preceding row. Since filling each slot in the array takes constant time, the total
cost of the algorithm is ©(nK).

Example 16.3 Solve the Knapsack Problem for K = 10 and five items
with sizes 9, 2, 7, 4, 1. We do this by building the following array.

0 1 2 3 4 5 6 7T 8 9 10
k=90 - - - — — — — — T -
k=210 - I - — — — — — 0 -
ks=7{0 - O - - — — I — TI/O
ky=410 - O - I - I O - O -
ks=110 I O I O I O I/O I O I
Key:

-: No solution for P(i, k).

O: Solution(s) for P(i, k) with 7 omitted.

I: Solution(s) for P(i, k) with 4 included.

I/O: Solutions for P(i, k) with ¢ included AND omitted.

For example, P(3,9) stores value I/O. It contains O because P(2,9)
has a solution. It contains I because P(2,2) = P(2,9 — 7) has a solution.
Since P(5,10) is marked with an L, it has a solution. We can determine
what that solution actually is by recognizing that it includes the 5th item
(of size 1), which then leads us to look at the solution for P(4,9). This
in turn has a solution that omits the 4th item, leading us to P(3,9). At
this point, we can either use the third item or not. We can find a solution
by taking one branch. We can find all solutions by following all branches
when there is a choice.

16.1.2 All-Pairs Shortest Paths

We next consider the problem of finding the shortest distance between all pairs of
vertices in the graph, called the all-pairs shortest-paths problem. To be precise,
for every u,v € V, calculate d(u, v).
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Figure 16.1 An example of k-paths in Floyd’s algorithm. Path 1, 3 is a O-path
by definition. Path 3, 0, 2 is not a O-path, but it is a 1-path (as well as a 2-path, a
3-path, and a 4-path) because the largest intermediate vertex is 0. Path 1, 3, 2 is
a 4-path, but not a 3-path because the intermediate vertex is 3. All paths in this
graph are 4-paths.

One solution is to run Dijkstra’s algorithm for finding the single-source shortest
path (see Section 11.4.1) |V| times, each time computing the shortest path from a
different start vertex. If G is sparse (that is, |[E| = ©(|V])) then this is a good
solution, because the total cost will be ©(|V|? + |V||E|log |V]) = ©(|V|*log |V])
for the version of Dijkstra’s algorithm based on priority queues. For a dense graph,
the priority queue version of Dijkstra’s algorithm yields a cost of ©(|V|3log |V]),
but the version using MinVertex yields a cost of O(|V|?).

Another solution that limits processing time to ©(|V|?) regardless of the num-
ber of edges is known as Floyd’s algorithm. It is an example of dynamic program-
ming. The chief problem with solving this problem is organizing the search process
so that we do not repeatedly solve the same subproblems. We will do this organi-
zation through the use of the k-path. Define a k-path from vertex v to vertex u to
be any path whose intermediate vertices (aside from v and u) all have indices less
than k. A O-path is defined to be a direct edge from v to u. Figure 16.1 illustrates
the concept of k-paths.

Define Dy (v, u) to be the length of the shortest k-path from vertex v to vertex u.
Assume that we already know the shortest k-path from v to u. The shortest (k + 1)-
path either goes through vertex k or it does not. If it does go through k, then
the best path is the best k-path from v to k followed by the best k-path from k
to u. Otherwise, we should keep the best k-path seen before. Floyd’s algorithm
simply checks all of the possibilities in a triple loop. Here is the implementation
for Floyd’s algorithm. At the end of the algorithm, array D stores the all-pairs
shortest distances.
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/** Compute all-pairs shortest paths */
static void Floyd(Graph G, int[][] D) {
for (int i=0; i<G.n(); i++) // Initialize D with weights
for (int j=0; j<G.n(); Jj++)
if (G.weight (i, j) !'= 0) D[i][]j] = G.weight (i, 3J);
for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); Jj++)
if ((D[i][k] !'= Integer.MAX VALUE) &&
(D[k][j] '= Integer.MAX VALUE) &&
(D[i]1[3] > (DI[il[k] + DI[k]1[3j])))
D[i][j] = D[il[k] + D[kI[3];

Clearly this algorithm requires ©(|V|?) running time, and it is the best choice
for dense graphs because it is (relatively) fast and easy to implement.

16.2 Randomized Algorithms

In this section, we will consider how introducing randomness into our algorithms
might speed things up, although perhaps at the expense of accuracy. But often we
can reduce the possibility for error to be as low as we like, while still speeding up
the algorithm.

16.2.1 Randomized algorithms for finding large values

In Section 15.1 we determined that the lower bound cost of finding the maximum
value in an unsorted list is {2(n). This is the least time needed to be certain that we
have found the maximum value. But what if we are willing to relax our requirement
for certainty? The first question is: What do we mean by this? There are many
aspects to “certainty” and we might relax the requirement in various ways.

There are several possible guarantees that we might require from an algorithm
that produces X as the maximum value, when the true maximum is Y. So far
we have assumed that we require X to equal Y. This is known as an exact or
deterministic algorithm to solve the problem. We could relax this and require only
that X’s rank is “close to” Y’s rank (perhaps within a fixed distance or percentage).
This is known as an approximation algorithm. We could require that X is “usually”
Y. This is known as a probabilistic algorithm. Finally, we could require only that
X’s rank is “usually” “close” to Y’s rank. This is known as a heuristic algorithm.

There are also different ways that we might choose to sacrifice reliability for
speed. These types of algorithms also have names.

1. Las Vegas Algorithms: We always find the maximum value, and “usually”
we find it fast. Such algorithms have a guaranteed result, but do not guarantee
fast running time.
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2. Monte Carlo Algorithms: We find the maximum value fast, or we don’t get
an answer at all (but fast). While such algorithms have good running time,
their result is not guaranteed.

Here is an example of an algorithm for finding a large value that gives up its
guarantee of getting the best value in exchange for an improved running time. This
is an example of a probabilistic algorithm, since it includes steps that are affected
by random events. Choose m elements at random, and pick the best one of those
as the answer. For large n, if m ~ logn, the answer is pretty good. The cost is
m — 1 compares (since we must find the maximum of m values). But we don’t
know for sure what we will get. However, we can estimate that the rank will be
abou mm—]:l For example, if n = 1,000, 000 and m = logn = 20, then we expect
that the largest of the 20 randomly selected values be among the top 5% of the n
values.

Next, consider a slightly different problem where the goal is to pick a number
in the upper half of n values. We would pick the maximum from among the first
”TH values for a cost of /2 comparisons. Can we do better than this? Not if we
want to guarantee getting the correct answer. But if we are willing to accept near
certainty instead of absolute certainty, we can gain a lot in terms of speed.

As an alternative, consider this probabilistic algorithm. Pick 2 numbers and
choose the greater. This will be in the upper half with probability 3/4 (since it is
not in the upper half only when both numbers we choose happen to be in the lower
half). Is a probability of 3/4 not good enough? Then we simply pick more numbers!
For k£ numbers, the greatest is in upper half with probability 1 — 2%, regardless of
the number n that we pick from, so long as n is much larger than k£ (otherwise
the chances might become even better). If we pick ten numbers, then the chance
of failure is only one in 2'© = 1024. What if we really want to be sure, because
lives depend on drawing a number from the upper half? If we pick 30 numbers,
we can fail only one time in a billion. If we pick enough numbers, then the chance
of picking a small number is less than the chance of the power failing during the
computation. Picking 100 numbers means that we can fail only one time in 10'%°

which is less chance than any disaster that you can imagine disrupting the process.

16.2.2 Skip Lists

This section presents a probabilistic search structure called the Skip List. Like
BSTs, Skip Lists are designed to overcome a basic limitation of array-based and
linked lists: Either search or update operations require linear time. The Skip List
is an example of a probabilistic data structure, because it makes some of its
decisions at random.

Skip Lists provide an alternative to the BST and related tree structures. The pri-
mary problem with the BST is that it may easily become unbalanced. The 2-3 tree
of Chapter 10 is guaranteed to remain balanced regardless of the order in which data
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values are inserted, but it is rather complicated to implement. Chapter 13 presents
the AVL tree and the splay tree, which are also guaranteed to provide good per-
formance, but at the cost of added complexity as compared to the BST. The Skip
List is easier to implement than known balanced tree structures. The Skip List is
not guaranteed to provide good performance (where good performance is defined
as O(logn) search, insertion, and deletion time), but it will provide good perfor-
mance with extremely high probability (unlike the BST which has a good chance
of performing poorly). As such it represents a good compromise between difficulty
of implementation and performance.

Figure 16.2 illustrates the concept behind the Skip List. Figure 16.2(a) shows a
simple linked list whose nodes are ordered by key value. To search a sorted linked
list requires that we move down the list one node at a time, visiting ©(n) nodes
in the average case. What if we add a pointer to every other node that lets us skip
alternating nodes, as shown in Figure 16.2(b)? Define nodes with a single pointer
as level O Skip List nodes, and nodes with two pointers as level 1 Skip List nodes.

To search, follow the level 1 pointers until a value greater than the search key
has been found, go back to the previous level 1 node, then revert to a level O pointer
to travel one more node if necessary. This effectively cuts the work in half. We
can continue adding pointers to selected nodes in this way — give a third pointer
to every fourth node, give a fourth pointer to every eighth node, and so on — until
we reach the ultimate of log n pointers in the first and middle nodes for a list of
n nodes as illustrated in Figure 16.2(c). To search, start with the bottom row of
pointers, going as far as possible and skipping many nodes at a time. Then, shift
up to shorter and shorter steps as required. With this arrangement, the worst-case
number of accesses is ©(logn).

We will store with each Skip List node an array named forward that stores
the pointers as shown in Figure 16.2(c). Position forward[0] stores a level 0
pointer, forward[1] stores a level 1 pointer, and so on. The Skip List object
includes data member level that stores the highest level for any node currently
in the Skip List. The Skip List stores a header node named head with level
pointers. The £ind function is shown in Figure 16.3.

Searching for a node with value 62 in the Skip List of Figure 16.2(c) begins at
the header node. Follow the header node’s pointer at 1evel, which in this example
is level 2. This points to the node with value 31. Because 31 is less than 62, we
next try the pointer from forward[2] of 31’s node to reach 69. Because 69 is
greater than 62, we cannot go forward but must instead decrement the current level
counter to 1. We next try to follow forward[1] of 31 to reach the node with
value 58. Because 58 is smaller than 62, we follow 58’s forward[1] pointer
to 69. Because 69 is too big, follow 58’s level 0 pointer to 62. Because 62 is not
less than 62, we fall out of the while loop and move one step forward to the node
with value 62.
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2 > >
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Figure 16.2 Tllustration of the Skip List concept. (a) A simple linked list.
(b) Augmenting the linked list with additional pointers at every other node. To
find the node with key value 62, we visit the nodes with values 25, 31, 58, and 69,
then we move from the node with key value 58 to the one with value 62. (c) The
ideal Skip List, guaranteeing O(logn) search time. To find the node with key
value 62, we visit nodes in the order 31, 69, 58, then 69 again, and finally, 62.

/*x Skiplist Search =/
public E find(Key searchKey) {

SkipNode<Key, E> x = head; // Dummy header node
for (int i=level; i>=0; i--) // For each level...
while ((x.forward[i] !'= null) && // go forward
(searchKey.compareTo (x.forward[i] .key()) > 0))
x = x.forward[i]; // Go one last step
x = x.forward[0]; // Move to actual record, if it exists
if ((x !'= null) && (searchKey.compareTo(x.key()) == 0))
return x.element (); // Got it
else return null; // Its not there

}
Figure 16.3 Implementation for the Skip List £ind function.
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/** Insert a record into the skiplist */
public void insert (Key k, E newValue) ({

int newLevel = randomLevel(); // New node’s level
if (newLevel > level) // If new node is deeper
AdjustHead (newlLevel) ; // adjust the header

// Track end of level
SkipNode<Key,E>[] update =
(SkipNode<Key, E>[])new SkipNode[level+l];

SkipNode<Key, E> x = head; // Start at header node
for (int i=level; i>=0; i--) { // Find insert position
while ((x.forward[i] != null) &&

(k.compareTo (x. forward[i] .key()) > 0))
x = x.forward[i];

update[i] = x; // Track end at level i

}

x = new SkipNode<Key, E>(k, newValue, newLevel);

for (int i=0; i<=newLevel; i++) { // Splice into list
x.forward[i] = update[i].forward[i]; // Who x points to
update[i] . forward[i] = x; // Who y points to

}

size++; // Increment dictionary size

Figure 16.4 Implementation for the Skip List Insert function.

The ideal Skip List of Figure 16.2(c) has been organized so that (if the first and
last nodes are not counted) half of the nodes have only one pointer, one quarter
have two, one eighth have three, and so on. The distances are equally spaced; in
effect this is a “perfectly balanced” Skip List. Maintaining such balance would be
expensive during the normal process of insertions and deletions. The key to Skip
Lists is that we do not worry about any of this. Whenever inserting a node, we
assign it a level (i.e., some number of pointers). The assignment is random, using
a geometric distribution yielding a 50% probability that the node will have one
pointer, a 25% probability that it will have two, and so on. The following function
determines the level based on such a distribution:

/** Pick a level using a geometric distribution */

int randomLevel () {
int lev;
for (lev=0; DSutil.random(2) == 0; lev++); // Do nothing
return lev;

}

Once the proper level for the node has been determined, the next step is to find
where the node should be inserted and link it in as appropriate at all of its levels.
Figure 16.4 shows an implementation for inserting a new value into the Skip List.

Figure 16.5 illustrates the Skip List insertion process. In this example, we
begin by inserting a node with value 10 into an empty Skip List. Assume that
randomLevel returns a value of 1 (i.e., the node is at level 1, with 2 pointers).
Because the empty Skip List has no nodes, the level of the list (and thus the level
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head head
10 10 20
(a) (b)
head head
5 10 20 2 5 10 20
(©) (d)
head
2 5 10 20 30
(e)

Figure 16.5 Illustration of Skip List insertion. (a) The Skip List after inserting
initial value 10 at level 1. (b) The Skip List after inserting value 20 at level 0.
(c) The Skip List after inserting value 5 at level 0. (d) The Skip List after inserting
value 2 at level 3. (e) The final Skip List after inserting value 30 at level 2.
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of the header node) must be set to 1. The new node is inserted, yielding the Skip
List of Figure 16.5(a).

Next, insert the value 20. Assume this time that randomLevel returns 0. The
search process goes to the node with value 10, and the new node is inserted after,
as shown in Figure 16.5(b). The third node inserted has value 5, and again assume
that randomLevel returns 0. This yields the Skip List of Figure 16.5.c.

The fourth node inserted has value 2, and assume that randomLevel re-
turns 3. This means that the level of the Skip List must rise, causing the header
node to gain an additional two (null) pointers. At this point, the new node is
added to the front of the list, as shown in Figure 16.5(d).

Finally, insert a node with value 30 at level 2. This time, let us take a close
look at what array update is used for. It stores the farthest node reached at each
level during the search for the proper location of the new node. The search pro-
cess begins in the header node at level 3 and proceeds to the node storing value 2.
Because forward[3] for this node is null, we cannot go further at this level.
Thus, update [3] stores a pointer to the node with value 2. Likewise, we cannot
proceed at level 2, so update[2] also stores a pointer to the node with value 2.
At level 1, we proceed to the node storing value 10. This is as far as we can go
at level 1, so update[1] stores a pointer to the node with value 10. Finally, at
level O we end up at the node with value 20. At this point, we can add in the new
node with value 30. For each value i, the new node’s forward[i] pointer is
set to be update[i] ->forward[i], and the nodes stored in update[i] for
indices O through 2 have their forward[i] pointers changed to point to the new
node. This “splices” the new node into the Skip List at all levels.

The remove function is left as an exercise. It is similar to insertion in that the
update array is built as part of searching for the record to be deleted. Then those
nodes specified by the update array have their forward pointers adjusted to point
around the node being deleted.

A newly inserted node could have a high level generated by randomLevel,
or a low level. It is possible that many nodes in the Skip List could have many
pointers, leading to unnecessary insert cost and yielding poor (i.e., ©(n)) perfor-
mance during search, because not many nodes will be skipped. Conversely, too
many nodes could have a low level. In the worst case, all nodes could be at level 0,
equivalent to a regular linked list. If so, search will again require ©(n) time. How-
ever, the probability that performance will be poor is quite low. There is only one
chance in 1024 that ten nodes in a row will be at level 0. The motto of probabilistic
data structures such as the Skip List is “Don’t worry, be happy.” We simply accept
the results of randomLevel and expect that probability will eventually work in
our favor. The advantage of this approach is that the algorithms are simple, while
requiring only ©(logn) time for all operations in the average case.
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In practice, the Skip List will probably have better performance than a BST. The
BST can have bad performance caused by the order in which data are inserted. For
example, if n nodes are inserted into a BST in ascending order of their key value,
then the BST will look like a linked list with the deepest node at depth n — 1. The
Skip List’s performance does not depend on the order in which values are inserted
into the list. As the number of nodes in the Skip List increases, the probability of
encountering the worst case decreases geometrically. Thus, the Skip List illustrates
a tension between the theoretical worst case (in this case, O(n) for a Skip List
operation), and a rapidly increasing probability of average-case performance of
©(logn), that characterizes probabilistic data structures.

16.3 Numerical Algorithms

This section presents a variety of algorithms related to mathematical computations
on numbers. Examples are activities like multiplying two numbers or raising a
number to a given power. In particular, we are concerned with situations where
built-in integer or floating-point operations cannot be used because the values being
operated on are too large. Similar concerns arise for operations on polynomials or
matrices.

Since we cannot rely on the hardware to process the inputs in a single constant-
time operation, we are concerned with how to most effectively implement the op-
eration to minimize the time cost. This begs a question as to how we should apply
our normal measures of asymptotic cost in terms of growth rates on input size.
First, what is an instance of addition or multiplication? Each value of the operands
yields a different problem instance. And what is the input size when multiplying
two numbers? If we view the input size as two (since two numbers are input), then
any non-constant-time algorithm has a growth rate that is infinitely high compared
to the growth of the input. This makes no sense, especially in light of the fact that
we know from grade school arithmetic that adding or multiplying numbers does
seem to get more difficult as the value of the numbers involved increases. In fact,
we know from standard grade school algorithms that the cost of standard addition
is linear on the number of digits being added, and multiplication has cost n x m
when multiplying an m-digit number by an n-digit number.

The number of digits for the operands does appear to be a key consideration
when we are performing a numeric algorithm that is sensitive to input size. The
number of digits is simply the log of the value, for a suitable base of the log. Thus,
for the purpose of calculating asymptotic growth rates of algorithms, we will con-
sider the “size” of an input value to be the log of that value. Given this view, there
are a number of features that seem to relate such operations.

* Arithmetic operations on large values are not cheap.
* There is only one instance of value n.
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* There are 2" instances of length k or less.

* The size (length) of value n is log n.

* The cost of a particular algorithm can decrease when n increases in value
(say when going from a value of 2 — 1 to 2F to 2¥ + 1), but generally
increases when n increases in length.

16.3.1 Exponentiation

We will start our examination of standard numerical algorithms by considering how
to perform exponentiation. That is, how do we compute m™? We could multiply
by m a total of n — 1 times. Can we do better? Yes, there is a simple divide
and conquer approach that we can use. We can recognize that, when n is even,
m® = m™?m™?2. If n is odd, then m® = ml*/2ml?/2lm. This leads to the
following recursive algorithm

int Power (base, exp) {
if exp = 0 return 1;
int half = Power (base, exp/2); // integer division of exp
half = half * half;
if (odd(exp)) then half = half * base;
return half;

Function Power has recurrence relation

0 n=1
f(n)—{ f(ln/2])+14+nmod2 n>1

whose solution is
f(n)=|logn]+p(n)—1

where (3 is the number of 1’s in the binary representation of 7.

How does this cost compare with the problem size? The original problem size
is logm + logn, and the number of multiplications required is logn. This is far
better (in fact, exponentially better) than performing n — 1 multiplications.

16.3.2 Largest Common Factor

We will next present Euclid’s algorithm for finding the largest common factor
(LCF) for two integers. The LCF is the largest integer that divides both inputs
evenly.

First we make this observation: If k£ divides n and m, then k divides n —m. We
know this is true because if k£ divides n then n = ak for some integer a, and if k
divides m then m = bk for some integer b. So, LCF(n,m) = LCF(n —m,n) =
LCF(m,n —m) = LCF(m,n).
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Now, for any value n there exists k and [ such that
n =km + [ where m > 1> 0.
From the definition of the mod function, we can derive the fact that
n = [n/m|m + n mod m.

Since the LCF is a factor of both n and m, and since n = km —+ [, the LCF must
therefore be a factor of both km and [, and also the largest common factor of each
of these terms. As a consequence, LC'F'(n, m) = LCF(m,l) = LCF(m,n mod

This observation leads to a simple algorithm. We will assume that n > m. At
each iteration we replace n with m and m with n mod m until we have driven m
to zero.

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

To determine how expensive this algorithm is, we need to know how much
progress we are making at each step. Note that after two iterations, we have re-
placed n with n mod m. So the key question becomes: How big is n mod m
relative to n?

n/m>1
2|n/m| >n/m
mln/m| >n/2

n—n/2>n—m|n/m| =mnmodm

L4l

n/2 > n mod m

Thus, function LCF will halve its first parameter in no more than 2 iterations.
The total cost is then O(logn).

16.3.3 Matrix Multiplication

The standard algorithm for multiplying two n x n matrices requires ©(n?) time.
It is possible to do better than this by rearranging and grouping the multiplications
in various ways. One example of this is known as Strassen’s matrix multiplication
algorithm.

For simplicity, we will assume that n is a power of two. In the following, A
and B are n x n arrays, while A;; and B;; refer to arrays of size n/2 x n/2. Using
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this notation, we can think of matrix multiplication using divide and conquer in the
following way:

[ A A M Bi1 Bio }
Ay1 Agg By Bas

A11B11 + A12Ba1 A11Bia + A12Ba2
A91Bi1 + AgeBa1 A2 Big+ AxBgg |-

Of course, each of the multiplications and additions on the right side of this
equation are recursive calls on arrays of half size, and additions of arrays of half
size, respectively. The recurrence relation for this algorithm is

T(n) = 8T(n/2) + 4(n/2)? = O(n?).

This closed form solution can easily be obtained by applying the Master Theo-
rem 14.1.

Strassen’s algorithm carefully rearranges the way that the various terms are
multiplied and added together. It does so in a particular order, as expressed by the
following equation:

[An A12:||:Bll BlZ:|:[51+52_54+56 S4 + S5
Ag1 Az || Ba1 B s¢ + s7 S9 — 83+ S5 — s7

In other words, the result of the multiplication for an n X n array is obtained by
a different series of matrix multiplications and additions for n/2 x n/2 arrays.
Multiplications between subarrays also use Strassen’s algorithm, and the addition
of two subarrays requires ©(n?) time. The subfactors are defined as follows:

(A12 — Ag2) - (B21 + Bao)
= (A1 + Ag) - (B11 + Bao)
s3 = (A1 — A21)- (B + Br2)
S4 (A1 + Ar2) - Boy
s5 = An - (B2 — Ba)
s¢ = A+ (B2 — Bn)
s7 = (Ao + A2)- B

S1 =

82

With a little effort, you should be able to verify that this peculiar combination of
operations does in fact produce the correct answer!

Now, looking at the list of operations to compute the s factors, and then count-
ing the additions/subtractions needed to put them together to get the final answers,
we see that we need a total of seven (array) multiplications and 18 (array) addi-
tions/subtractions to do the job. This leads to the recurrence

T(n) = 7T(n/2)+ 18(n/2)?
T(n) = O(n'°%7) =0 n>"").
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We obtained this closed form solution again by applying the Master Theorem.

Unfortunately, while Strassen’s algorithm does in fact reduce the asymptotic
complexity over the standard algorithm, the cost of the large number of addition
and subtraction operations raises the constant factor involved considerably. This
means that an extremely large array size is required to make Strassen’s algorithm
practical in real applications.

16.3.4 Random Numbers

The success of randomized algorithms such as were presented in Section 16.2 de-
pend on having access to a good random number generator. While modern compil-
ers are likely to include a random number generator that is good enough for most
purposes, it is helpful to understand how they work, and to even be able to construct
your own in case you don’t trust the one provided. This is easy to do.

First, let us consider what a random sequence. From the following list, which
appears to be a sequence of “random” numbers?

- 1,1,1,1,1,1,1,1, 1, ...
°*1,2,3,4,5,6,7,8,9, ...
°©2,7,1,8,2,8,1,8,2, ...

In fact, all three happen to be the beginning of a some sequence in which one
could continue the pattern to generate more values (in case you do not recognize
it, the third one is the initial digits of the irrational constant e). Viewed as a series
of digits, ideally every possible sequence has equal probability of being generated
(even the three sequences above). In fact, definitions of randomness generally have
features such as:

* One cannot predict the next item. The series is unpredictable.

* The series cannot be described more briefly than simply listing it out. This is

the equidistribution property.

There is no such thing as a random number sequence, only “random enough”
sequences. A sequence is pseudorandom if no future term can be predicted in
polynomial time, given all past terms.

Most computer systems use a deterministic algorithm to select pseudorandom
numbers.! The most commonly used approach historically is known as the Linear
Congruential Method (LCM). The LCM method is quite simple. We begin by
picking a seed that we will call r(1). Then, we can compute successive terms as
follows.

r(i) = (r(i — 1) x b) mod ¢

where b and ¢ are constants.

! Another approach is based on using a computer chip that generates random numbers resulting
from “thermal noise” in the system. Time will tell if this approach replaces deterministic approaches.
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By definition of the mod function, all generated numbers must be in the range
0 to t — 1. Now, consider what happens when 7 (i) = r(j) for values 7 and j. Of
course then (i + 1) = r(j + 1) which means that we have a repeating cycle.

Since the values coming out of the random number generator are between 0 and
t — 1, the longest cycle that we can hope for has length ¢. In fact, since 7(0) = 0, it
cannot even be quite this long. It turns out that to get a good result, it is crucial to
pick good values for both b and ¢. To see why, consider the following example.

Example 16.4 Given a ¢ value of 13, we can get very different results
depending on the b value that we pick, in ways that are hard to predict.
r(i) =6r(i — 1) mod 13 =
. 1,6,10,8,9,2,12,7,3,5,4,11, 1, ...
r(i) =7r(i — 1) mod 13 =
.y 1,7,10,5,9,11,12,6,3,8,4,2, 1, ...
r(i) =5r(i — 1) mod 13 =
v 1,5,12,8, 1, ...
. 2,10, 11, 3,2, ...
s 4,7,9,6,4, ...
.y 0,0, ...
Clearly, a b value of 5 is far inferior to b values of 6 or 7 in this example.

If you would like to write a simple LCM random number generator of your
own, an effective one can be made with the following formula.

(i) = 16807r(i — 1) mod 23! — 1.

16.3.5 The Fast Fourier Transform

As noted at the beginning of this section, multiplication is considerably more diffi-
cult than addition. The cost to multiply two n-bit numbers directly is O(n?), while
addition of two n-bit numbers is O(n).

Recall from Section 2.3 that one property of logarithms is

lognm = logn + log m.

Thus, if taking logarithms and anti-logarithms were cheap, then we could reduce
multiplication to addition by taking the log of the two operands, adding, and then
taking the anti-log of the sum.

Under normal circumstances, taking logarithms and anti-logarithms is expen-
sive, and so this reduction would not be considered practical. However, this re-
duction is precisely the basis for the slide rule. The slide rule uses a logarithmic
scale to measure the lengths of two numbers, in effect doing the conversion to log-
arithms automatically. These two lengths are then added together, and the inverse
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logarithm of the sum is read off another logarithmic scale. The part normally con-
sidered expensive (taking logarithms and anti-logarithms) is cheap because it is a
physical part of the slide rule. Thus, the entire multiplication process can be done
cheaply via a reduction to addition. In the days before electronic calculators, slide
rules were routinely used by scientists and engineers to do basic calculations of this
nature.

Now consider the problem of multiplying polynomials. A vector a of n values
can uniquely represent a polynomial of degree n — 1, expressed as

n—1
Py(x) = Zaixi.
i=0

Alternatively, a polynomial can be uniquely represented by a list of its values at
n distinct points. Finding the value for a polynomial at a given point is called
evaluation. Finding the coefficients for the polynomial given the values at n points
is called interpolation.

To multiply two n — 1-degree polynomials A and B normally takes ©(n?) co-
efficient multiplications. However, if we evaluate both polynomials (at the same
points), we can simply multiply the corresponding pairs of values to get the corre-
sponding values for polynomial AB.

Example 16.5 Polynomial A: 2% + 1.

Polynomial B: 222 — = + 1.

Polynomial AB: 22 — 23 + 322 — 2z + 1.

When we multiply the evaluations of A and B at points 0, 1, and -1, we
get the following results.

AB(-1) = (2)(4)=
AB(0) =
AB1) = (2)(2)=

These results are the same as when we evaluate polynomial AB at these
points.

Note that evaluating any polynomial at O is easy. If we evaluate at 1 and -
1, we can share a lot of the work between the two evaluations. But we would
need five points to nail down polynomial AB, since it is a degree-4 polynomial.
Fortunately, we can speed processing for any pair of values ¢ and —c. This seems
to indicate some promising ways to speed up the process of evaluating polynomials.
But, evaluating two points in roughly the same time as evaluating one point only
speeds the process by a constant factor. Is there some way to generalized these



Sec. 16.3 Numerical Algorithms 529

observations to speed things up further? And even if we do find a way to evaluate
many points quickly, we will also need to interpolate the five values to get the
coefficients of AB back.

So we see that we could multiply two polynomials in less than ©(n?) operations
if a fast way could be found to do evaluation/interpolation of 2n — 1 points. Before
considering further how this might be done, first observe again the relationship
between evaluating a polynomial at values ¢ and —c. In general, we can write
P,(x) = Eq(x) + Oq(x) where E, is the even powers and O, is the odd powers.

So,
n/2—1 n/2—1

2i 2i+1
PQ(IL’) = Z a; T t + Z a2;4+1% vt
i=0 =0
The significance is that when evaluating the pair of values c and —c, we get

E.(c)+ O4(c) = Eq(c) — Ou(—c)
Ou(c) = —04(—c)

Thus, we only need to compute the E's and Os once instead of twice to get both
evaluations.

The key to fast polynomial multiplication is finding the right points to use for
evaluation/interpolation to make the process efficient. In particular, we want to take
advantage of symmetries, such as the one we see for evaluating x and —z. But we
need to find even more symmetries between points if we want to do more than cut
the work in half. We have to find symmetries not just between pairs of values, but
also further symmetries between pairs of pairs, and then pairs of pairs of pairs, and
SO on.

Recall that a complex number z has a real component and an imaginary compo-
nent. We can consider the position of z on a number line if we use the y dimension
for the imaginary component. Now, we will define a primitive nth root of unity if

1. 2" =1and

2. 2F £1for0 < k < n.

20,21, ..., 2" ! are called the nth roots of unity. For example, when n = 4, then

z =1 or z = —i. In general, we have the identities €™ = —1, and 27 = 27 /n =
—12i/™_The significance is that we can find as many points on a unit circle as we
would need (see Figure 16.6). But these points are special in that they will allow
us to do just the right computation necessary to get the needed symmetries to speed
up the overall process of evaluating many points at once.

The next step is to define how the computation is done. Define an n X n matrix
A, with row ¢ and column j as

A, = (2Y).
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Figure 16.6 Examples of the 4th and 8th roots of unity.
The idea is that there is a row for each root (row i for z*) while the columns corre-

spond to the power of the exponent of the = value in the polynomial. For example,
when n = 4 we have z = 1. Thus, the A, array appears as follows.

1 1 1 1
1 1 —1 —
Az = 1 -1 1 -1
1 - -1 1

Let a = [ag, ay, ..., an_l]T be a vector that stores the coefficients for the polyno-
mial being evaluated. We can then do the calculations to evaluate the polynomial
at the nth roots of unity by multiplying the A, matrix by the coefficient vector. The
resulting vector F, is called the Discrete Fourier Transform for the polynomial.

F,=A,a=0.

n—1
bi: E akZZk.
k=0

- 8 . .
When n = 8, then z = /4, since v/i = 1. So, the corresponding matrix is as
follows.

1 1 1 1 1 1 1 1
1 Viooi i -1 Vi =i —iVi

1 i —1 - 1 i —1 —i
4o L io—i Vio—1 =i i =i
1 -1 1 -1 1 -1 1 -1
1 Vi i —ivi -1 Vi =i i

1 —i -1 i1 —i -1 i

1 —ivi —i =i -1 i i Vi

We still have two problems. We need to be able to multiply this matrix and
the vector faster than just by performing a standard matrix-vector multiplication,
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otherwise the cost is still n? multiplies to do the evaluation. Even if we can mul-
tiply the matrix and vector cheaply, we still need to be able to reverse the process.
That is, after transforming the two input polynomials by evaluating them, and then
pair-wise multiplying the evaluated points, we must interpolate those points to get
the resulting polynomial back that corresponds to multiplying the original input
polynomials.

The interpolation step is nearly identical to the evaluation step.

=AW =d.

We need to find A1, This turns out to be simple to compute, and is defined as
follows.

1
—1
AZ — EAI/Z‘

In other words, interpolation (the inverse transformation) requires the same com-
putation as evaluation, except that we substitute 1/z for z (and multiply by 1/n at
the end). So, if we can do one fast, we can do the other fast.

If you examine the example A, matrix for n = 8, you should see that there
are symmetries within the matrix. For example, the top half is identical to the
bottom half with suitable sign changes on some rows and columns. Likewise for the
left and right halves. An efficient divide and conquer algorithm exists to perform
both the evaluation and the interpolation in ©(nlogn) time. This is called the
Discrete Fourier Transform (DFT). It is a recursive function that decomposes
the matrix multiplications, taking advantage of the symmetries made available by
doing evaluation at the nth roots of unity. The algorithm is as follows.

Fourier_ Transform(double *Polynomial, int n) {
// Compute the Fourier transform of Polynomial
// with degree n. Polynomial is a list of
// coefficients indexed from 0 to n-1. n is
// assumed to be a power of 2.
double Even[n/2], 0dd[n/2], Listl[n/2], List2[n/2];

if (n==1) return Polynomial[O0];

for (j=0; j<=n/2-1; j++) {
Even[j] = Polynomial[23j];
O0dd[j] = Polynomial[2j+1];
}
Listl = Fourier_ Transform(Even, n/2);
List2 = Fourier Transform(0dd, n/2);
for (j=0; j<=n-1, J++) {
Imaginary z = pow(E, 2xi*PIxj/n);
k=3 % (n/2);
Polynomial[j] = Listl[k] + zxList2[k];
}

return Polynomial;
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Thus, the full process for multiplying polynomials A and B using the Fourier
transform is as follows.

1.

Represent an n — 1-degree polynomial as 2n — 1 coefficients:
[CLQ, A1y eeey Ap—1, 07 ceey 0]

Perform Fourier_Transform on the representations for A and B

Pairwise multiply the results to get 2n — 1 values.

. Perform the inverse Fourier_Transform to get the 2n — 1 degree poly-

nomial AB.

16.4 Further Reading

For further information on Skip Lists, see “Skip Lists: A Probabilistic Alternative
to Balanced Trees” by William Pugh [Pug90].

16.5 Exercises

16.1
16.2

16.3

16.4

16.5

16.6

Solve Towers of Hanoi using a dynamic programming algorithm.

There are six possible permutations of the lines

for (int k=0; k<G.n(); k++)
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); Jj++)

in Floyd’s algorithm. Which ones give a correct algorithm?

Show the result of running Floyd’s all-pairs shortest-paths algorithm on the
graph of Figure 11.26.

The implementation for Floyd’s algorithm given in Section 16.1.2 is ineffi-
cient for adjacency lists because the edges are visited in a bad order when
initializing array D. What is the cost of of this initialization step for the adja-
cency list? How can this initialization step be revised so that it costs ©(|V|?)
in the worst case?

State the greatest possible lower bound that you can prove for the all-pairs
shortest-paths problem, and justify your answer.

Show the Skip List that results from inserting the following values. Draw
the Skip List after each insert. With each value, assume the depth of its
corresponding node is as given in the list.
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value depth

5 2
20 0
30 0

2 0
25 1
26 3
31 0

16.7 If we had a linked list that would never be modified, we can use a simpler
approach than the Skip List to speed access. The concept would remain the
same in that we add additional pointers to list nodes for efficient access to the
ith element. How can we add a second pointer to each element of a singly
linked list to allow access to an arbitrary element in O(logn) time?

16.8 What is the expected (average) number of pointers for a Skip List node?

16.9 Write a function to remove a node with given value from a Skip List.

16.10 Write a function to find the ¢th node on a Skip List.

16.6 Projects

16.1 Complete the implementation of the Skip List-based dictionary begun in Sec-
tion 16.2.2.

16.2 Implement both a standard ©(n?) matrix multiplication algorithm and Stras-
sen’s matrix multiplication algorithm (see Exercise 14.16.3.3). Using empir-
ical testing, try to estimate the constant factors for the runtime equations of
the two algorithms. How big must n be before Strassen’s algorithm becomes
more efficient than the standard algorithm?



